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Some embedded Runge—Kutta methods for the numerical solution of the eigenvalue
Schrodinger equation are developed. More specifically, a new embedded modified Runge—
Kutta 4(6) Fehlberg method with minimal phase-lag and a block embedded Runge—Kutta—
Fenlberg method are developed. For the numerical solution of the eigenvalue Schrodinger
equation we investigate two cases. (i) The specific case, in which the potential V' (z) is an
even function with respect to z. It is assumed, aso, that the wavefunctions tend to zero
for £ — 4oo. (ii) The genera case for the well-known cases of the Morse potential and
Woods-Saxon or Optical potential. Numerical and theoretical results show that the new
approaches are more efficient compared with the well-known Runge—Kutta—Fehlberg 4(5)
method.

1. Introduction

In recent years, the Schridinger equation has been the subject of great activity, the
aim being to achieve a fast and reliable algorithm that generates a numerical solution
(see [20] and references therein).

The one-dimensional Schrodinger equation has the form

y'(2) = [V(2) — E]y(2). 1)

Equations of this type occur very frequently in theoretical physics (see, for example,
[18]), and there is areal need to be able to solve them both efficiently and reliably by
numerica methods. In (1), E is areal number denoting the energy and V' is a given
function which denotes the potential. We investigate two cases.

In the first specific case, V(x) is an even function and y(x) — 0 for x — +oo0.
As example of potentials which satisfy these properties, we present the following,
which is well known in severa areas of physics:
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The one-dimensional anharmonic oscillator potential

Ax2

1+ ya?’

For the numerical solution of the specific eigenvalue Schrodinger equation (1), the
following group of agorithms are available: (1) Rayleigh-Ritz methods [19], (2) per-
turbation methods [2,14,15], (3) methods using Padé approximants [17], (4) direct
numerical integration techniques or boundary value techniques [6-9] and (5) an oper-
ator method based upon the SO(2,1) dynamic group [5]. Analytical approaches to the
Schrodinger equation (1) have been obtained for Vi(x) by Flessas [11,12], Varma[25],
Whitehead et al. [26]. The most popular methods (for the reasons fully described
in [4,21]) for the numerica integration of the eigenvalue Schrodinger equation are
the shooting techniques. A well-known method of this category is the Numerov's
method.

In the second case, V(x) is a general function and y(x) — O for x — 0. As ex-
amples of potentials which satisfy these properties, we present the following potentials,
which are well known in severa areas of physics:

(i) The Morse potential (Kobeissi and Kobeissi [16], Yano et al. [27]):
Vg(z) = D[1 - exp(—aX)]?, ©)
where X =2 — 2e, ze =0, a = 1, and D = 1000.
(ii) The Woods-Saxon potential (Adam et al. [1]):
up ugt
1+t  ap(l+1t)?’
where ¢t = exp((x — ze)/ao), uo = —50, e = 7 and ag = 0.6.

Vi(z) = 2° + X and  parameters. 2

Vgii(z) = 4)

The Schrodinger equation of the form (1) can be analyzed to a set of equations
which belong to the general category of differential equations of the form

y = f(xy), (5

which have solution with periodical or oscillating behavior. For the solution of the
problems of the form (5), Runge—Kutta methods are very popular. Many packages
which are used for the numerical solution of the Schrodinger equation consist of
Runge—Kutta methods. One of the most popular Runge—K utta method of these pack-
ages is the Runge—Kutta—Fehlberg 4(5) method.

Brusaand Nigro [3] introduced the phase-lag as an important property of methods
for solving problems of the form (5) especialy in the cases where its solution is periodic
or has an oscillatory behavior. Two-step methods with minimal phase-lag have been
developed for the numerical solution of problem (1) (see [23] and references therein).

In section 2 we will develop the basic theory for the phase-lag analysis of the
Runge—Kutta methods. Based on this theory, we will describe in section 3 the deriva
tion of the modified Runge—Kutta—Fehlberg method with minimal phase-lag. In sec-
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tion 4, the basic theory for the phase-lag analysis of the block Runge—K utta methods is
introduced. In section 5 we develop ablock embedded Runge—K utta—Fehlberg method
based on the second-order Runge—K utta—Fehlberg scheme. In section 6, the error esti-
mation procedure is described for the embedded methods and for the block embedded
methods. Finaly, in section 7, the application of the developed methods to problem (1)
is presented, and extended numerical results based on the potentias Vi, Vg and Vy;i
are produced to show the efficiency of the new approach.

2. Phaselag analysis of the Runge-Kutta methods
To develop the new method we use the test equation
y =ivy, wvred. (6)

Based on the reasons fully described in Houwen et a. [13], we shall confine
our considerations to homogeneous phase-lag, and, based on its definition given in
that work, it is convenient to use a test equation with an exact solution of the form
€v?. However, as is shown by our numerical results, inhomogeneous problems can
successfully be dealt with by increasing the order of homogeneous phase-lag. By
comparing the exact and the numerical solution for this equation and by requiring
that these solutions are in phase with maximal order in the step-size h, we derive the
so-called phase-lag relation.

For first-order equations we write the m-stage explicit Runge-Kutta method in
the matrix form given in table 1.

Based on the table 1, we have that for an explicit m-stage s-block Runge—Kutta
method the quantity ,,41 is given by

©

Ynt1= Yns
q—1
yglj_l =Yn + h Z gq,pf (mn—l + aph1 yy(]/p_%_l)! q=1...,s, (7)
p=0
_, ()
Table 1
m-stage explicit Runge—Kutta method.
0
a1 b1o
az bao bz
am bm,O bm,l e bm,m—l
doo doir ... dom-1 dom
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Whereaj :1f0rj > m, Gij :bi,j forz':1,...,m,j:1,...,z'—1, 9ij :di,j for
i=m+1j=1...;i-ladg,;=c fori=m+2,....m+k j=1,...,i-1,
r=0,..,k,t=0,..., m+k.

Application of the above method to (6) yields the numerical solution

yo =alyo and a.= A, (H?) +iHB,(H?), H=uvh, (8)

where

Am(H?) =1~ tpH? + t4H* + teH® + - -,
i ©

m(H?) =1~ t3H? + ts H* + t7H® +

are polynomials in H?, completely defined by Runge-Kutta parameters a; and b;;,
1=20,...,m,j=1,...,i— 1 The dissipative factor is a, = a.(H), and y,, denotes
the apprOX|mat|on to y(xn) where z,, = nh, n=0,1,.

A comparison of (8) with the solution of (6) Ieads to the following definition of
the dispersion or phase error or phase-lag and the dissipative error.

Definition 1 (see [13] and [22]). In the explicit m-stage Runge—Kutta method, pre-
sented in table 1, the quantities

t(H) = H —agla.(H)|,  a(H)=1— |a.(H)| (10)
are, respectively, called the phase-lag and the dissipative error. If t(H) = O(H"™ 1) and

a(H) = O(H**1), then the method is said to be of phase-lag order » and dissipative
order s.

We also have the following theorem (for the detailed proof, see Simos [22]):

Theorem 1. For the Runge—Kutta method, given by table 1 and (8), we have the
following formula for the direct calculation of the phase-lag order » and the phase-lag
constant ¢:

Bm H2 T T
tan(H) — H[AmEHZH = cH ™+ O(H"3). (12)

Using formulas (11) and (9) we derive the phase-lag relations for a fourth-
algebraic-order method. The results are shown in table 2. It is clear from this table
that we have a considerable extension to the table given by Houwen et a. [13]. We
aso note that for a fourth-order method we have that ¢4 = 1/24 and t5 = 1/120. In
table 3 we present the results for the second-order Runge—K utta methods.
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Table 2
Phase-lag conditions of the RK method of algebraic order four.

Phase-lag order  Phase-lag conditions

4 to = %, t3 = ?13

6 ta —ts = 3—10

8 t4+3te—3t7=l;35
10 2ts + 5ts + 15t — 15to = 2
12 17ts + 42t + 105tg + 315t10 — 315t = 222
14 62t4 + 15315 + 378ts + 945t10 + 2835¢1, — 2835413 = L&
16 1382t4 + 3410t6 + 8415t5 + 20790t10 + 51975¢12 + 155925¢14 — 155925¢15 = Z24
18 21844t, + 53898ts + 1329905 + 328185t10 + 810810t1, + 2027025¢14

+ 6081075t16 — 6081075t1; = 2520

20 929569t4 + 22936206 + 5659290ts + 13963950t 10 + 34459425t 1, + 85135050t 14

+ 212837625t16 + 638512875t15 — 638512875¢19 = 125359

Table 3
Explicit Runge—Kutta—Fehlberg method of
order four (RKF4). The coefficients are

defined in [10].
0

a1 b1o

az b2 b1

as b0 ba1 bz

as bao ba baz baz

‘ co c1 c2 c3 ca

3. Derivation of the modified Runge-Kutta—ehlberg method with minimal
phase-lag

We will derived here the modified Runge—K utta—Fehlberg method with phase-lag
of order six based on the well-known Runge—K utta fourth-order Fehlberg method.

In table 3 we present the well-known fourth-order Runge—K utta—Fehlberg methaod.

If we apply the method parametrised by table 3 to the test equation (6), we have
the following theorem:

Theorem 2. The method, parameterised by table 3 with coefficients a;, b; j, cx, @ =
1(D4, j =0(Di — 1, £ = 0(1)4, given in [10], is a fourth-order Runge—K utta method
with phase-lag of order 6.

Proof. Application of the method RKF4 to (6) leads to (8) with

A4(H2) :1*t2H2+t4H4,

(12)
Ba(H?) =1—tzH? + tsH*,
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where

1 1 1 o 01— 2a,)H*
o 7% 7 48(5a2 — 4az + 1)’

Based on equations (13) and on table 2 (with the notation that ¢4 = 1/24) and
ts = 1/120 for a fourth-order Runge—Kutta method), we have that the method is of
phase-lag order six if the following equation is satisfied:

tp = (13

1

tg —ts = —. 14
a=ts= o (14)

Solving this equation we have that

1 2
= — = —. 1

a 1 or az 5 ( 5)
We choose the value a; = 1/4. A similar result without proof and analysis can
be found in [24]. O

From (11) and for the value of parameter a, given above and the parameters of
the method given in the appendix, we have that the phase-lag of the method is equal
to
HB4(H?  H'

a0~ 8ot O(H?). (16)

t(H) =tan(H) —
Definition 2. We call a Runge-Kutta method an embedded method when aloca phase-
lag error estimate is included. Thisloca phase-lag error estimate is obtained from the
difference between the m-stages of the method which produce a numerical solution
yL 1 Of phase-lag order ¢ and the (m + 1)-stages of the method which produce a

numerical solution /7, , of phase-lag order ¢ + 2.

Based on the above definition, we have produced an embedded Runge—Kutta—
Fehlberg 4(6) method. This, because the embedded method, consists by two methods
— one with phase-lag of order four (which is equa to agebraic order of the method)
and the other with minimal phase-lag of order six (see equation (16)).

4. Block Runge-Kutta methods
For first-order equations we introduce the m-stage (k + 1)-block explicit Runge—
Kutta method in the matrix form given in table 4.

We have the following definition:

Definition 3. We call a Runge-Kutta method a k-block method when consists of &
embedded Runge—Kutta schemes.
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Table 4
m-stage (k + 1)-block explicit Runge—Kutta method.
0
a1 b1o
az b2o b
Am bm,O bm,l e bm,m—l
dm+1,0 dm+1,1 e dm+1,m—1 dm+1,m
C0,0 Co,1 fe Com—1 Co,m Com—+1
C1,0 C11 e Clm—1 Cim Cim+1 Clm+2
Cs,0 Cs,1 Cs;m+s—1 Csm+s
Ck,0 Ck,1 Ckym+k—1 Ckm+k

The phase-lag error estimate is given by
TEC = [y;}s — 1) (17)

where s is the phase-lag order.

So it is obvious that the block method is very useful for cases, in which we want
to use a variable-step procedure.

Application of the above method to (6) yields the numerical solution

Yo =alyo ad a, = Ay (H?) +iHB,x(H?), H=ovh, (18)
where
Ay (H?) =1—toH? + taH* + tgH® - - -,

(19
By (H?) =1—tzH? + ts H* + t7H° - -

are polynomias in H?, completely defined by Runge-Kutta parameters a;, b;; and
s t=1,....m, j=1...,i—1 1 =0,...,m+ k. The disspative factor is
asx = a(H), and y,, denotes the approximation to y(z,,), where z,, = nh,n =0,1,....

A comparison of (18) with the solution of (6) leads to the definition of the
dispersion or phase error or phase-lag and the dissipative error given above.

We have, now, the following theorem for the block methods which is similar to
the previous theorem 1 for the simple Runge-Kutta methods (for the detailed proof,
see Simos [22]):

Theorem 3. For the m-stage (k + 1)-block Runge—Kutta method, given by table 4,
we have the following formula for the direct calculation of the phase-lag order r and
the phase-lag congtant c:

Bm,k(Hz)

tan(H) — H |:7Am,k ()

] = cH™ ™+ O(H™3). (20)
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Table 5
Phase-lag conditions of the RK method of algebraic order two.

Phase-lag order ~ Phase-lag conditions

4 % +t3—1t2=0
6 2 ftotstta—ts—t5=0
8 2L+t — tats + 2taty — tots + tita — t3 —t7 =0
10 —tots + tats + o + te + Btats — tat7 — thts + 2teta + tats — t3 — t5 — to
— 2tatota =0
12 taty + sl + Ataty — 2teta — 3tita + tets — tats + tio — tot7 — tate — tats + thts
+ t5t3 + 2tgts + tets — 5 — ti — 2tetats + 2tatats — 3tatsts = 0
14 t12 — t13 — t10t3 + 2t10to — 2tgtots + 2tetats — Otetats + 2tetats — 3t6t§t3 + 3t421t2t3

+ 2tatoty + Btatits — Atatots + t3 — t5 — 2tgts + tets + 3tats — t2 + tety + Aot
+ tato — thts — 6t5t5 + 5tat3 — tatin — thto — tatr — t3ts + t3ts + o =0

16 t1g — tis — 12tetats + 2tetat7 + Stetats — Atetots — 3ttats + 6t3tots + 2tatate
+ Btatity + Atatdts — Statats — th — tiots + 2t1ot2 — 2tiots + taots + 3tiota
— 2tgte + tgt7 + 4tgtg + tetg + téts — 3tét2 + 3t6t§ + 5156t‘21 + tat11 — t§t7 — tit3
+ At3t; — 10583 + Btats — tatiz — tt1n — tatg — tat7 — tots + tots — 2tiotata

+ 2tgtats — Btatatz + 2tatats — tatsts — 2tstats + Btstatals + mamme =0

Based on formula (20) and from (19), we derived in table 5 the phase-lag relations
for a second-algebraic-order method.

5. Derivation of the block Runge-K utta—Fehlberg method

Based on the simple second-agebraic-order Runge—K utta—Fehlberg method (see
[10]), we introduce the new explicit block RungeKutta—Fehlberg (BRKF) method
given in table 6.

If we apply any stage of the method of table 6 to the test equation (6), we have
the following theorem:

Theorem 4. The method, described in table 6 with coefficients ¢, [ =1,...,m+k,
given in the appendix, is a 3-block 3-stage Runge—K utta method with phase-lag orders
given in table 7.

See the appendix for a detailed proof.

6. Numerical illustration
6.1. Local phase-lag error estimate

The embedded methods described in this paper are used for the solution of the
Schrodinger equation, which is analyzed on a set of first-order equations.

To estimate the error we use the other stage of the RungeKutta—Fehlberg 4(6)
method (of phase-lag order four) (for coefficients, see [10]). The definition of these
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Table 6
A 3-block 3-stage Runge—K utta—Fehlberg method (BRKF).
0
1/4 1/4
27/40 | —189/800 729/800
€00 Co1 Co,2 Co3
C1,0 C11 C1,2 C1,3 C14
€20 21 2,2 23 C24 C25
Table 7

Phase-lag for the 3-block 3-stage Runge-
Kutta—Fehlberg method given in table 6.

Stage Phase-lag

o
99225
H 11
9823275
g3
1404728325

Table 8
Embedded Runge—Kutta—Fehlberg method 4(6). The coefficients
are defined in [10] with the free parameter a, defined in previous
section.
0
1/6 1/6
1/4 1/16 3/16
2/5 14/125 —12/125 48/125

1 17/20  6/5  —24/5 15/4
1/2 | 1/10 —3/10 34/45  —5/72  1/72
c 1/4 0  —16/27 125/108 5/27
error | 1/4 0 —-16/9  125/36 1/18 -2

coefficients is based on the fact that a, = 1/4. The resulting method is presented in
table 8.

Our error control strategy is simple. At every x,,, we contral the estimate of the
local phase-lag error TEC from (17).

If TEC is less than the maximum alowable local error TOL, given by the user,
then the new step-size is given by

1
TOL } . -

ITECl|oc

where ¢ = 1/6. If TEC is greater than the maximum allowable loca error TOL, then
this step-size is rejected and we repeat the step.

hnc-,w = O-ghold{

6.2. Block methods

For the block method introduced in section 5 the error control strategy is simple.
At every x,, we control, for the k-block, the estimate of the local phase-lag error TEC
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from (17). The TEC is, for every block, i.e., for an embedded method, the difference
between the approximation of the solution y(z,,), y 11, Which is obtained using the
method with phase-lag of low order and the approximation of the solution y(xz,,), v 1
which is obtained using the method with phase-lag of high order (see definition 1 and
formula (17)).

If TEC is less than the maximum alowable local error TOL given by the user,
then we use this block to calculate the solution at x,, and the new step-size is given
by (21), where ¢ is the phase-lag order of the successful k-block. If TEC is greater
than the maximum allowable local error TOL then we repeat the previous devel oped
strategy for the (k + 1)-block.

6.3. Numerical tests

Totest the validity of the proposed new methods we have applied the new methods
to potential (2) for specific choices of the parameters, for the first case. Based on
previous works (see Fack et a. [6-9]), we choose appropriate values of R, the cut-
off value for which we assume that f(R) = 0. These are given in the tables. For
the second case, we have applied the new method to the potentials (3) and (4). For
comparison purposes, we have used the well-known classica Runge-Kutta—ehlberg
4(5) method.

In table 9 we present the absolute errors |Eecaed _ pexdt| gnd of red time
of computation for the energy values F,,, n = 1,...,4, for the potential (2) with
A =~ = 0 using the following methods:

(1) MI: the classical Runge—Kutta—Fehlberg 4(5) method;

(2) MII: the modified Runge—K utta—Fehlberg 4(6) method produced in this paper and
presented in table 8;

(3) MIII: the block Runge—Kutta—Fehlberg method (BRKF) introduced in section 5
for initial step-size hg = 0.1.

In table 10 we present the absolute errors |Eeaciaed _ pexact) gnd of real time
of computation for the energy values E,, n = 1,...,4, for the potentia (2) with
A =~ = 10 using the methods mentioned above for initial step-size hg = 0.1.

In table 11 we present the absolute errors | EedcUaed _ pexadt| gnd of real time of
computation for the energy values E for the potentia (3) using the methods mentioned
above. R = 10.0 and hg = 0.125.

In table 12 we present the absolute errors | Eedcuaed _ pexadt| gnd of real time of
computation for the energy values E for the potential (4) using the methods mentioned
above. R = 15.0 and hg = 0.125.

From the above-mentioned results, it is easy to see that the new methods are
more accurate and efficient compared with the well-known Runge—Kutta—Fehlberg
4(5) method.
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Table 9
Comparison of absolute errors | XA _ pe@t) gnd of real time of computar
tion for potential (2) with A = v = 0, produced by the classical Runge—Kutta—
Fehlberg 4(5) method (M), the present modified Runge-Kutta—~ehlberg 4(6)
method with phase-lag of order 6 (MII) and the block Runge—Kutta—Fehlberg
method (BRKF) (MI11). R = 10.

Exact eigenvalues E,, Absolute errors

MI MII M1
Ey=1 79%x10% 10x107° 93x107%
Es=7 59x10°% 12x10% 83x10 %
Ewu=15 63x10° 15x10°% 73x10°®
Exn =23 21x107* 17x10° 88x1077
Total time of computation (in s) 8.3 6.5 53

Table 10

Comparison of absolute errors |E@Ma _ pe@| and of real time of com-
putation for potentia (2) with A = ~ = 10, produced by the classical
Runge—Kutta—Fehlberg 4(5) method (M), the present modified Runge—K utta—
Fehlberg 4(6) method with phase-lag of order 6 (MII) and the block Runge-
Kutta—Fehlberg method (BRKF) (MlIl). R = 10.

Exact eigenvalues E,, Absolute errors

MI MII MIII
Eo = 1.580022327 28x10°% 10x10% 99x10°%
Es = 3.879036830 40x1077 32x10% 98x10°%
E14 = 5.832767530 07x1077 50x10% 87x10°%
E» = 7.903154152 81x10°® 31x107 91x10°°
Total time of computation (in s) 9.0 7.4 6.1

Table 11

Comparison of absolute errors |E@Ma™ _ pe@| and of real time of com-

putation for potential (3), produced by the classica Runge-Kutta—Fehlberg

4(5) method (MI), the present modified Runge-Kutta—Fehlberg 4(6) method

with phase-lag of order 6 (MIl) and the block Runge—K utta—Fehlberg method
(BRKF) (MII1). R = 10.

Exact eigenvalues E,, Absolute errors

MI MII MIII
Eo = 31.3727766017 44%x107* 16x10% 91x10°®
E» = 151.8638830084 71%x107° 31x10* 87x10°°
E4 = 264.3549894152 40%x1072 21x10% 85x10°°
Es = 368.8460958219 6.1x 1073 42x10% 91x10°°
Es = 465.3372022286 72%x107%2 40x10° 88x10°°

Total time of computation (in s) 13.2 115 10.0

33
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Table 12
Comparison of absolute errors |EAMa _ ge@| gnd of red time of com-
putation for potential (4), produced by the classica Runge—-Kutta—Fehlberg
4(5) method (M), the present modified Runge-Kutta—Fehlberg 4(6) method
with phase-lag of order 6 (MIl) and the block Runge—K utta—Fehlberg method
(BRKF) (MIII). R = 10.

Exact eigenvaues E,, Absolute errors

MI MII MIII
Eo = —49.457788728 32x107% 43x10° 88x107
E4 = —41.232607772 21x10* 54x10°% 79x10°8
Eq = —22.588602257 6.2x107% 48x10° 81x1077
Ei13 = —3.9082324808 78x107%2 64x107* 7.7x10°°
Total time of computation (in s) 8.8 7.2 6.3

7. Conclusions

In this paper, some new numerical methods for the numerical solution of the
Schrodinger equation are developed. The methods are based on the minimization of
the phase-lag. More specifically, a Runge-Kutta method with minimal phase-lag is
produced based on the fourth-order Runge—Kutta—Fehlberg method. Based on this
method, we have constructed a modified Runge—-Kutta—Fehlberg method with phase-
lag of order six. Based on the new method and the appropriate fifth-algebraic-order
method with phase-lag of order four, we have constructed a new modified embedded
Runge—Kutta—Fehlberg scheme.

The block Runge—Kutta methods with minimal phase-lag are, also, introduced in
the present work. A block Runge—K utta—Fehlberg method is obtained.

The numerical results indicate that the new methods are significantly more effi-
cient than the classical fourth-order Runge—K utta—Fehlberg method for the solution of
the Schrodinger equation.

Appendix: Construction of the BRKF scheme
Case |: Phase-lag of order 8

Application of the first block of the BRKF method to (6) leads to (18) with
As1(H?) = 1 t2H? + taH*, -
Ba1(H?) = boo + boa + boz + bos — taH?,

where

to = 10bg,1 + 27bg2 + 40bo 3 _ 729bo,2 + 1600b¢ 3 = 117bo3
2= 40 : 3= 3200 : 4T 704

. (23)
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We note that a necessary relation from the algebraic order conditions is
boo + bo1 + bo2 + boz = 1. (24)

The solution of the system of equations produced, based on the relations given
in table 4 and in (23) and (24), is given by

, T 17756 523520 B
00~ 98415’ 01~ 95515 02~ 1791153 03 = 12285°

From (20) and for the values of parameters given above, we have that the phase-lag
of the method is equal to

(25

HB3.(H?)  H®

HH) = ten(H) = == 2y = 99225

+O(HM). (26)

Case Il: Phase-lag of order 10

Application of the second block of the BRKF method to (6) leads to (18) with

A3,2(H2) =1- tsz + t4H4,

2 2 4 @7
Bsz(H?) = boo + boa + bo2 + boz — tsH” + ts H,
where
o 10b1,1 + 27b12 + 40(b1,3 + b1,4) b 5103b1,2 + 1120061 3 + 960001 4
2= 40 ! 3= 22400 8
. 2457b1,3 + 14081)1’4 e — y
‘T 14784 ! >~ 105
We note that a necessary relation from the algebraic order conditions is
bio+b11+ b2 +b13+b1a=1 (29

The solution of the system of equations produced, based on the relations given
in table 4 and in (28) and (29), is given by

bro— 1076 , 11:%, = 33664001
' 177147 ' 45927 ' 16120377 (30)
704 1
b13 = 2113’ 14= g

From (20) and for the values of parameters given above, we have that the phase-lag
of the method is equa to

HB3p(H?) — HY

HH) =ten(t) = ="y ~ gg23a75

+O(H"Y). (31)
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Case IlI: Phase-lag of order 12

Application of the third block of the BRKF method to (6) leads to (18) with
A3’3(H2) =1- tsz + t4H4 + tGHB,

2 2 4 (32)
Bsz(H?) = boo + boa + bo2 + boz — taH* + tsH?,
where
10b2,1 + 27bp 2 + 40(b23 + b2.4 + b25)
t2= 40 ’
. _ 45027by + 100800by3 + 8640002 + 8960025 39
8- 201600 ’
by = 22113b2,3 + 12672b2,4 + 147841)2,5 e — 3b2,4 + 5b2’5 e — 7%
‘T 133056 ! T 315 ®~ Toa5°
We note that a necessary relation from the algebraic order conditions is
bao + b2 + b2 + b2z + boa+ b5 = 1. (34

The solution of the system of equations produced, based on the relations given
in table 4 and in (33) and (34), is given by

3652 34376 3616000
20 = 937781° 21~ 56133 22~ 19702683’ (35)
64 2 1

bo3 = 2457 boa = 33’ bas = TR
From (20) and for the values of parameters given above, we have that the phase-lag
of the method is equal to

H B3 3(H?) B H3

H) = tan(H) — -
HH) = ten(H) = ==y = 1404728325

+O(H™®). (36)
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